Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Sci Rep ; 13(1): 8551, 2023 05 26.
Article in English | MEDLINE | ID: covidwho-20242022

ABSTRACT

Tuberculosis (TB) is the second leading cause of death by a single infectious disease behind COVID-19. Despite a century of effort, the current TB vaccine does not effectively prevent pulmonary TB, promote herd immunity, or prevent transmission. Therefore, alternative approaches are needed. We seek to develop a cell therapy that produces an effective antibiotic in response to TB infection. D-cycloserine (D-CS) is a second-line antibiotic for TB that inhibits bacterial cell wall synthesis. We have determined D-CS to be the optimal candidate for anti-TB cell therapy due to its effectiveness against TB, relatively short biosynthetic pathway, and its low-resistance incidence. The first committed step towards D-CS synthesis is catalyzed by the L-serine-O-acetyltransferase (DcsE) which converts L-serine and acetyl-CoA to O-acetyl-L-serine (L-OAS). To test if the D-CS pathway could be an effective prophylaxis for TB, we endeavored to express functional DcsE in A549 cells as a human pulmonary model. We observed DcsE-FLAG-GFP expression using fluorescence microscopy. DcsE purified from A549 cells catalyzed the synthesis of L-OAS as observed by HPLC-MS. Therefore, human cells synthesize functional DcsE capable of converting L-serine and acetyl-CoA to L-OAS demonstrating the first step towards D-CS production in human cells.


Subject(s)
COVID-19 , Tuberculosis , Humans , Cycloserine/pharmacology , Cycloserine/metabolism , Serine/metabolism , Acetyl Coenzyme A/metabolism , Anti-Bacterial Agents
2.
Cell Mol Life Sci ; 80(6): 153, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2328394

ABSTRACT

Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.


Subject(s)
Protein Kinases , Virus Diseases , Humans , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arginine/metabolism , Serine/metabolism , Phosphorylation , RNA Splicing , Alternative Splicing , Viral Proteins/genetics , Virus Diseases/drug therapy , Serine-Arginine Splicing Factors/metabolism
3.
Protein Sci ; 32(4): e4603, 2023 04.
Article in English | MEDLINE | ID: covidwho-2268219

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid protein is the most abundantly expressed viral protein during infection where it targets both RNA and host proteins. However, identifying how a single viral protein interacts with so many different targets remains a challenge, providing the impetus here for identifying the interaction sites through multiple methods. Through a combination of nuclear magnetic resonance (NMR), electron microscopy, and biochemical methods, we have characterized nucleocapsid interactions with RNA and with three host proteins, which include human cyclophilin-A, Pin1, and 14-3-3τ. Regarding RNA interactions, the nucleocapsid protein N-terminal folded domain preferentially interacts with smaller RNA fragments relative to the C-terminal region, suggesting an initial RNA engagement is largely dictated by this N-terminal region followed by weaker interactions to the C-terminal region. The nucleocapsid protein forms 10 nm ribonuclear complexes with larger RNA fragments that include 200 and 354 nucleic acids, revealing its potential diversity in sequestering different viral genomic regions during viral packaging. Regarding host protein interactions, while the nucleocapsid targets all three host proteins through its serine-arginine-rich region, unstructured termini of the nucleocapsid protein also engage host cyclophilin-A and host 14-3-3τ. Considering these host proteins play roles in innate immunity, the SARS-CoV-2 nucleocapsid protein may block the host response by competing interactions. Finally, phosphorylation of the nucleocapsid protein quenches an inherent dynamic exchange process within its serine-arginine-rich region. Our studies identify many of the diverse interactions that may be important for SARS-CoV-2 pathology during infection.


Subject(s)
COVID-19 , RNA , Humans , SARS-CoV-2/metabolism , Cyclophilins/analysis , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Arginine , Serine , NIMA-Interacting Peptidylprolyl Isomerase/analysis
4.
Cell Rep Med ; 3(9): 100743, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2254238

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 was a dominant circulating SARS-CoV-2 variant worldwide. Recent reports hint that BA.2 is similarly potent regarding antibody evasion but may be more transmissible than BA.1. The pathogenicity of BA.2 remains unclear and is of critical public health significance. Here we investigated the virological features and pathogenicity of BA.2 with in vitro and in vivo models. We show that BA.2 is less dependent on transmembrane protease serine 2 (TMPRSS2) for virus entry in comparison with BA.1 in vitro. In K18-hACE2 mice, BA.2 replicates more efficiently than BA.1 in the nasal turbinates and replicates marginally less efficiently in the lungs, leading to decreased body weight loss and improved survival. Our study indicates that BA.2 is similarly attenuated in lungs compared with BA.1 but is potentially more transmissible because of its better replication at the nasal turbinates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , SARS-CoV-2/genetics , Serine , Virulence
5.
Acta Biomed ; 94(1): e2023030, 2023 02 13.
Article in English | MEDLINE | ID: covidwho-2241943

ABSTRACT

BACKGROUND AND AIM: Angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 and serine 11A proteases (TMPRSS2, TMPRSS11A), and a cell surface cluster of differentiation 147 (CD147) might be a gene candidate that exerts the susceptibility to and mortality from coronavirus disease 19 (COVID-19). The aim of this study was to investigate the associations between ace2, tmprss2, tmprss11a, and cd147 polymorphic variants and the severity of COVID-19 in the Ukrainian population. METHODS: The study population consisted of the Ukrainian population with COVID-19: patients without oxygen therapy (n=62), with non-invasive (n=92) and invasive (n=35) oxygen therapy, as well as control subjects (n=92). Allelic polymorphisms of ace2 rs4240157, tmprss2 rs12329760, and tmprss11a rs353163 were determined by real-time PCR, and cd147 rs8259 polymorphism was detected by PCR with subsequent restrictase analysis. We compared investigated polymorphisms distribution with other populations by meta-analysis. RESULTS: Our study is the first to obtain data about the distribution of investigated gene polymorphisms in the Ukrainian population: tmprss2 rs12329760 - CC 60.9%, CT 35.9%, TT 3.2%; tmprss11a rs353163 - CC 46.7%, CT 40.2%, TT 13.1%; ace2 rs4240157 - CC 7.6%, C 18.5%, CT 22.8%, TT 19.6%, T 31.5%; cd147 rs8259 - TT 60.9%, AT 32.6%, AA 6.5%. This distribution was similar to the Northern, Western and Southern European populations. There was a statistically significant difference in the frequency of tmprss2 polymorphic genotypes CC 57.1%, CT 28.6%, and TT 14.3% (P<0.05) in COVID-19 patients with invasive oxygen therapy in comparison with non-invasive oxygen therapy. This tmprss2 mutation occurs in the scavenger receptor cysteine-rich (SRCR) domain and might be important for protein-protein interaction in a calcium-dependent manner. CONCLUSIONS: Our study indicated the presence of an association between the tmprss2 rs12329760 polymorphism and the severity of COVID-19 in the Ukrainian population.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Angiotensin-Converting Enzyme 2/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Polymorphism, Genetic , Serine/genetics , Oxygen , Membrane Proteins/genetics , Serine Proteases/genetics , Serine Endopeptidases/genetics
6.
Antimicrob Agents Chemother ; 67(2): e0068622, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2213877

ABSTRACT

Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein ß-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of ß-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.


Subject(s)
COVID-19 , Mucormycosis , Mycoses , Humans , Micafungin/pharmacology , Micafungin/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mucormycosis/drug therapy , Mucormycosis/microbiology , Calcineurin/genetics , Calcineurin/pharmacology , SARS-CoV-2 , Mucor/genetics , Echinocandins/pharmacology , Echinocandins/therapeutic use , Mycoses/drug therapy , Serine , Drug Resistance, Fungal/genetics
7.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2200315

ABSTRACT

Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.


Subject(s)
DNA, Z-Form , Interferon Type I , Nucleic Acids , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , NF-kappa B/metabolism , RNA , RNA-Binding Proteins/metabolism , Serine/genetics , Threonine/genetics
8.
Sci Signal ; 15(757): eabm0808, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2088392

ABSTRACT

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Phosphorylation , Glycogen Synthase Kinase 3/metabolism , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Serine/metabolism , Threonine/metabolism , Mammals/metabolism , Protein Serine-Threonine Kinases
9.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2082255

ABSTRACT

The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7-P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.


Subject(s)
COVID-19 Drug Treatment , Serpins , Humans , SARS-CoV-2 , Furin/genetics , Furin/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Serpins/genetics , Serpins/pharmacology , Cathepsin L/metabolism , Angiotensin-Converting Enzyme 2 , Virus Internalization , Antiviral Agents/pharmacology , Mutagenesis , Recombinant Proteins , Serine , Serine Endopeptidases/genetics
10.
Clin Pharmacokinet ; 61(10): 1331-1343, 2022 10.
Article in English | MEDLINE | ID: covidwho-2075730

ABSTRACT

The search for clinically effective antivirals against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is ongoing. Repurposing of drugs licensed for non-coronavirus disease 2019 (COVID-19) indications has been extensively investigated in laboratory models and in clinical studies with mixed results. Nafamostat mesylate (nafamostat) is a drug licensed in Japan and Korea for indications including acute pancreatitis and disseminated intravascular coagulation. It is available only for continuous intravenous infusion. In vitro human lung cell line studies with nafamostat demonstrate high antiviral potency against SARS-CoV-2 (half maximal inhibitory concentration [IC50] of 0.0022 µM [compared to remdesivir 1.3 µM]), ostensibly via inhibition of the cellular enzyme transmembrane protease serine 2 (TMPRSS2) preventing viral entry into human cells. In addition, the established antithrombotic activity is hypothesised to be advantageous given thrombosis-associated sequelae of COVID-19. Clinical reports to date are limited, but indicate a potential benefit of nafamostat in patients with moderate to severe COVID-19. In this review, we will explore the pre-clinical, pharmacokinetic and clinical outcome data presently available for nafamostat as a treatment for COVID-19. The recruitment to ongoing clinical trials is a priority to provide more robust data on the safety and efficacy of nafamostat as a treatment for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Pancreatitis , Acute Disease , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamidines , Fibrinolytic Agents/therapeutic use , Guanidines , Humans , Pancreatitis/drug therapy , SARS-CoV-2 , Serine/therapeutic use
11.
J Med Chem ; 65(19): 12562-12593, 2022 10 13.
Article in English | MEDLINE | ID: covidwho-2036741

ABSTRACT

Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytokine Release Syndrome , Dipeptidyl Peptidase 4 , Furin , Humans , Papain , RNA-Dependent RNA Polymerase , Reactive Oxygen Species , Serine , Spike Glycoprotein, Coronavirus/metabolism
12.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: covidwho-1876430

ABSTRACT

By the end of December 2021, coronavirus disease 2019 (COVID-19) produced more than 271 million cases and 5.3 million deaths. Although vaccination is an effective strategy for pandemic control, it is not yet equally available in all countries. Therefore, identification of prognostic biomarkers remains crucial to manage COVID-19 patients. The aim of this study was to evaluate predictors of COVID-19 severity previously proposed. Clinical and demographic characteristics and 120 single-nucleotide polymorphisms were analyzed from 817 patients with COVID-19, who attended the emergency department of the Hospital Universitario de La Princesa during March and April 2020. The main outcome was a modified version of the 7-point World Health Organization (WHO) COVID-19 severity scale (WHOCS); both in the moment of the first hospital examination (WHOCS-1) and of the severest WHOCS score (WHOCS-2). The TMPRSS2 rs75603675 genotype (OR = 0.586), dyslipidemia (OR = 2.289), sex (OR = 0.586), and the Charlson Comorbidity Index (OR = 1.126) were identified as the main predictors of disease severity. Consequently, these variables might influence COVID-19 severity and could be used as predictors of disease development.


Subject(s)
COVID-19 , COVID-19/diagnosis , Comorbidity , Female , Humans , Male , Serine , Serine Endopeptidases/genetics , Severity of Illness Index , Sex Factors
13.
Eur J Clin Invest ; 52(8): e13786, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1774786

ABSTRACT

BACKGROUND: Individuals with chronic kidney disease are affected by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to multiple comorbidities and altered immune system. The first step of the infection process is the binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) receptor, followed by its priming by transmembrane protease serine 2 (TMPRSS2). We hypothesized that circulating soluble ACE2 levels, as well as the expressions of ACE2 and TMPRSS2 in the microvasculature, are increased in patients with end-stage kidney disease (ESKD). METHODS: A total of 210 participants were enrolled, representing 80 ESKD patients and 73 non-CKD controls for soluble ACE2, and 31 ESKD and 26 non-CKD controls for vasculature and fat tissue bioassays. We have assessed ACE2 expression in blood using ELISA and in tissue using immunofluorescence. RESULTS: Soluble ACE2 levels were higher in ESKD patients compared to controls; however, there is no sex difference observed. In ESKD and controls, soluble ACE2 positively correlated with Interleukin 6 (IL-6) and C-reactive protein (CRP), respectively. Similarly, ACE2 tissue expression in the vasculature was higher in ESKD patients; moreover, this higher ACE2 expression was observed only in male ESKD patients. In addition, TMPRSS2 expression was observed in vessels from males and females but showed no sex difference. The expression of ACE2 receptor was higher in ESKD patients on ACE-inhibitor/angiotensin blocker treatment. CONCLUSION: ESKD is associated with increased ACE2 levels in the circulation and pronounced in male vasculature; however, further studies are warranted to assess possible sex differences on specific treatment regime(s) for different comorbidities present in ESKD.


Subject(s)
COVID-19 , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2 , Female , Humans , Male , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Serine
14.
Curr Pharm Biotechnol ; 23(13): 1596-1611, 2022.
Article in English | MEDLINE | ID: covidwho-1626000

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/genetics , Humans , Peptidyl-Dipeptidase A/genetics , Pharmaceutical Preparations , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Serine/genetics , Severity of Illness Index , Toll-Like Receptor 7/genetics
15.
World J Gastroenterol ; 27(39): 6590-6600, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1488813

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) seems to employ two routes of entrance to the host cell; via membrane fusion (with the cells expressing both angiotensin converting enzyme 2 (ACE2) and transmembrane peptidase/serine subfamily member 2/4 (TMPRSS2/4)) or via receptor-mediated endocytosis (to the target cells expressing only ACE2). The second mode is associated with cysteine cathepsins (probably cathepsin L) involvement in the virus spike protein (S protein) proteolytic activation. Also furin might activate the virus S protein enabling it to enter cells. Gastrointestinal tract (GIT) involvement in SARS-CoV-2 infection is evident in a subset of coronavirus disease 2019 (COVID-19) patients exhibiting GIT symptoms, such as diarrhea, and presenting viral-shedding in feces. Considering the abundance and co-localization of ACE2 and TMPRSS2 in the lower GIT (especially brush-border enterocytes), these two receptors seem to be mainly involved in SARS-CoV-2 invasion of the digestive tract. Additionally, in vitro studies have demonstrated the virions capability of infection and replication in the human epithelial cells lining GIT. However, also furin and cysteine cathepsins (cathepsin L) might participate in the activation of SARS-CoV-2 spike protein contributing to the virus invasiveness within GIT. Moreover, cathepsin L (due to its involvement in extracellular matrix components degradation and remodeling, the processes enhanced during SARS-CoV-2-induced inflammation) might be responsible for the dysregulation of absorption/ digestion functions of GIT, thus adding to the observed in some COVID-19 patients symptoms such as diarrhea.


Subject(s)
COVID-19 , Peptide Hydrolases , Cathepsin L , Gastrointestinal Tract , Humans , SARS-CoV-2 , Serine , Spike Glycoprotein, Coronavirus , Virus Internalization
16.
Mol Divers ; 26(1): 265-278, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1160696

ABSTRACT

Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues including those in the aerodigestive tract. It helps the entry of novel coronavirus (n-CoV) or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host cell. Successful inhibition of the TMPRSS2 can be one of the crucial strategies to stop the SARS-CoV-2 infection. In the present study, a set of bioactive molecules from Morus alba Linn. were screened against the TMPRSS2 through two widely used molecular docking engines such as Autodock vina and Glide. Molecules having a higher binding affinity toward the TMPRSS2 compared to Camostat and Ambroxol were considered for in-silico pharmacokinetic analyses. Based on acceptable pharmacokinetic parameters and drug-likeness, finally, five molecules were found to be important for the TMPRSS2 inhibition. A number of bonding interactions in terms of hydrogen bond and hydrophobic interactions were observed between the proposed molecules and ligand-interacting amino acids of the TMPRSS2. The dynamic behavior and stability of best-docked complex between TRMPRSS2 and proposed molecules were assessed through molecular dynamics (MD) simulation. Several parameters from MD simulation have suggested the stability between the protein and ligands. Binding free energy of each molecule calculated through MM-GBSA approach from the MD simulation trajectory suggested strong affection toward the TMPRSS2. Hence, proposed molecules might be crucial chemical components for the TMPRSS2 inhibition.


Subject(s)
COVID-19 Drug Treatment , Morus , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Serine , Virus Internalization
17.
Nat Commun ; 12(1): 1676, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1135664

ABSTRACT

The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.


Subject(s)
COVID-19/metabolism , Carbon/metabolism , Folic Acid/metabolism , SARS-CoV-2/physiology , Virus Replication , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Folic Acid Antagonists/pharmacology , Glucose/metabolism , Humans , Methotrexate/pharmacology , RNA, Viral/biosynthesis , SARS-CoV-2/drug effects , Serine/metabolism , Transcription, Genetic , Vero Cells , Viral Proteins/genetics , Virus Replication/drug effects
18.
Med Hypotheses ; 149: 110543, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1087147

ABSTRACT

The socio-economic implications of COVID-19 are devastating. Considerable morbidity is attributed to 'long-COVID' - an increasingly recognized complication of infection. Its diverse symptoms are reminiscent of vitamin B12 deficiency, a condition in which methylation status is compromised. We suggest why SARS-CoV-2 infection likely leads to increased methyl-group requirements and other disturbances of one-carbon metabolism. We propose these might explain the varied symptoms of long-COVID. Our suggested mechanismmight also apply to similar conditions such as myalgic encephalomyelitis/chronic fatigue syndrome. The hypothesis is evaluable by detailed determination of vitamin B12and folate status, including serum formate as well as homocysteine and methylmalonic acid, and correlation with viral and host RNA methylation and symptomatology. If confirmed, methyl-group support should prove beneficial in such individuals.


Subject(s)
COVID-19/complications , Folic Acid/blood , Vitamin B 12 Deficiency/diagnosis , Adenosine/analogs & derivatives , Adenosine/chemistry , COVID-19/blood , COVID-19/physiopathology , Folic Acid Deficiency , Formates/blood , Genome, Viral , Glutathione/blood , Homocysteine/blood , Hospitalization , Humans , Methylation , Methylmalonic Acid/blood , Oxidative Stress , RNA/chemistry , Serine/blood , Vitamin B 12/blood , Post-Acute COVID-19 Syndrome
20.
J Transl Med ; 18(1): 329, 2020 08 31.
Article in English | MEDLINE | ID: covidwho-736398

ABSTRACT

BACKGROUND: The new Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which was first detected in Wuhan (China) in December of 2019 is responsible for the current global pandemic. Phylogenetic analysis revealed that it is similar to other betacoronaviruses, such as SARS-CoV and Middle-Eastern Respiratory Syndrome, MERS-CoV. Its genome is ∼ 30 kb in length and contains two large overlapping polyproteins, ORF1a and ORF1ab that encode for several structural and non-structural proteins. The non-structural protein 1 (nsp1) is arguably the most important pathogenic determinant, and previous studies on SARS-CoV indicate that it is both involved in viral replication and hampering the innate immune system response. Detailed experiments of site-specific mutagenesis and in vitro reconstitution studies determined that the mechanisms of action are mediated by (a) the presence of specific amino acid residues of nsp1 and (b) the interaction between the protein and the host's small ribosomal unit. In fact, substitution of certain amino acids resulted in reduction of its negative effects. METHODS: A total of 17,928 genome sequences were obtained from the GISAID database (December 2019 to July 2020) from patients infected by SARS-CoV-2 from different areas around the world. Genomes alignment was performed using MAFFT (REFF) and the nsp1 genomic regions were identified using BioEdit and verified using BLAST. Nsp1 protein of SARS-CoV-2 with and without deletion have been subsequently modelled using I-TASSER. RESULTS: We identified SARS-CoV-2 genome sequences, from several Countries, carrying a previously unknown deletion of 9 nucleotides in position 686-694, corresponding to the AA position 241-243 (KSF). This deletion was found in different geographical areas. Structural prediction modelling suggests an effect on the C-terminal tail structure. CONCLUSIONS: Modelling analysis of a newly identified deletion of 3 amino acids (KSF) of SARS-CoV-2 nsp1 suggests that this deletion could affect the structure of the C-terminal region of the protein, important for regulation of viral replication and negative effect on host's gene expression. In addition, substitution of the two amino acids (KS) from nsp1 of SARS-CoV was previously reported to revert loss of interferon-alpha expression. The deletion that we describe indicates that SARS-CoV-2 is undergoing profound genomic changes. It is important to: (i) confirm the spreading of this particular viral strain, and potentially of strains with other deletions in the nsp1 protein, both in the population of asymptomatic and pauci-symptomatic subjects, and (ii) correlate these changes in nsp1 with potential decreased viral pathogenicity.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , Sequence Deletion , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Base Sequence , Betacoronavirus/pathogenicity , COVID-19 , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Gene Frequency , Genome, Viral , Geography , Humans , Lysine/genetics , Models, Molecular , Pandemics/statistics & numerical data , Phenylalanine/genetics , Pneumonia, Viral/epidemiology , Protein Domains/genetics , SARS-CoV-2 , Serine/genetics , Viral Nonstructural Proteins/chemistry , Virulence/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL